【题目】如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为 .
【答案】﹣3
【解析】解:
∵A(﹣3,5),B(﹣3,0),C(2,0),
∴AB=5,BC=2﹣(﹣3)=2+3=5,AB⊥x轴,
∴△ABC是等腰直角三角形,
过点A′作A′E⊥AB于E,过点C′作C′F⊥x轴于F,
则A′E=3,BE= =4,
∵△A′BC′是△ABC旋转得到,
∴∠A′BE=∠C′BF,
在△A′BE和△C′BF中, ,
∴△A′BE≌△C′BF(AAS),
∴BF=BE=4,C′F=A′E=3,
∴OF=BF﹣OB=4﹣3=1,
∴点C′的坐标为(1,﹣3),
把(1,﹣3)代入y= 得, =﹣3,
解得k=﹣3.
故答案为:﹣3.
根据点A、B、C的坐标求出AB、BC的长,从而得到△ABC是等腰直角三角形,过点A′作A′E⊥AB于E,过点C′作C′F⊥x轴于F,然后求出A′E、BE,再利用“AAS”证明△A′BE和△C′BF全等,根据全等三角形对应边相等求出BF,C′F,再求出OF,从而得到点C′的坐标,再利用待定系数法求反比例函数解析式解答.
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与 交于点D,以O为圆心,OC的长为半径作 交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为 . (结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则 的值等于
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2﹣ax﹣a经过点B(2, ),与y轴交于点D.
(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.
(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;
(2)求三位同学中至少有一人抽到自己制作卡片的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y= x﹣1与抛物线y=﹣ x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为﹣8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).
(1)求该抛物线的函数关系式;
(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;
(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从邵阳市到长沙的高铁列车里程比普快列车里程缩短了75千米,运行时间减少了4小时,已知邵阳市到长沙的普快列车里程为306千米,高铁列车平均时速是普快列车平均时速的3.5倍.
(1)求高铁列车的平均时速;
(2)某日刘老师从邵阳火车南站到长沙市新大新宾馆参加上午11:00召开的会议,如果他买到当日上午9:20从邵阳市火车站到长沙火车南站的高铁票,而且从长沙火车南站到新大新宾馆最多需要20分钟.试问在高铁列车准点到达的情况下他能在开会之前赶到吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com