精英家教网 > 初中数学 > 题目详情

【题目】如图,以AB为直径的⊙O交△ABC的BC、AC边与D、E两点,在图中仅以没有刻度的直尺画出三角形的三条高(简单叙述你的画法).

【答案】解:如图:连AD、BE交于点G,连CG延长交AB于F.AD、BE、CF即为△ABC的高.
【解析】分别根据圆周角定理作出AC,BC边的高,再连接CG并延长即可得出AB边的高.
【考点精析】根据题目的已知条件,利用三角形的“三线”和圆周角定理的相关知识可以得到问题的答案,需要掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.
(1)求证:△ABP≌△ADP;
(2)若BP=EF,求证:四边形EPFD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣2|×cos60°﹣( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.

(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(﹣1,0)、B(3,0).

(1)求抛物线的解析式;
(2)在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;
(3)如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣ (x﹣ 2+4上,能使△ABP为等腰三角形的点P的个数有(
A.3个
B.4个
C.5个
D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = =
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.

查看答案和解析>>

同步练习册答案