【题目】已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.
【答案】
(1)
解:因为直线y=x﹣1,其中k=1,b=﹣1,
所以点P(1,﹣1)到直线y=x﹣1的距离为:d= = = =
(2)
解:⊙Q与直线y= x+9的位置关系为相切.
理由如下:
圆心Q(0,5)到直线y= x+9的距离为:d= = =2,
而⊙O的半径r为2,即d=r,
所以⊙Q与直线y= x+9相切
(3)
解:当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,
因为点(0,4)到直线y=﹣2x﹣6的距离为:d= = =2 ,
因为直线y=﹣2x+4与y=﹣2x﹣6平行,
所以这两条直线之间的距离为2
【解析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y= x+9,然后根据切线的判定方法可判断⊙Q与直线y= x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.
科目:初中数学 来源: 题型:
【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则 的值等于
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2﹣ax﹣a经过点B(2, ),与y轴交于点D.
(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y= x﹣1与抛物线y=﹣ x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为﹣8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).
(1)求该抛物线的函数关系式;
(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;
(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,直线PA交O于A、E两点,PA的垂线CD切O于点C,过点A作O的直径AB.
(1)求证:AC平分∠DAB;
(2)将直线CD向下平行移动,在将直线CD向下平行移动的过程中,如图乙、丙,试指出与∠DAC相等的角(不要求证明).
(3)在图甲中,若DC+DA=6,O的直径为10,求AE的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com