精英家教网 > 初中数学 > 题目详情

【题目】如图,A.B是双曲线y= 上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为

【答案】
【解析】解:过点B作BE⊥x轴于点E, ∵D为OB的中点,
∴CD是△OBE的中位线,即CD= BE.
设A(x, ),则B(2x, ),CD= ,AD=
∵△ADO的面积为1,
ADOC=1, )x=1,解得k=
故答案是:
过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD= BE,设A(x, ),则B(2x, ),故CD= ,AD= ,再由△ADO的面积为1求出y的值即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线 轴于 两点,交 轴于点

(Ⅰ)求抛物线的解析式;
(Ⅱ)若 是抛物线的第一象限图象上一点,设点 的横坐标为m,
在线段 上,CD=m,当 是以 为底边的等腰三角形时,求点 的坐标;
(Ⅲ)在(Ⅱ)的条件下,是否存在抛物线上一点 ,使 ,若存在,求出点 的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣2|×cos60°﹣( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(
A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.

(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(﹣1,0)、B(3,0).

(1)求抛物线的解析式;
(2)在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;
(3)如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = =
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:n为正整数,点A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直线y=x﹣1上,点B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在双曲线y=﹣ 上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,A3B3⊥x轴,…,AnBn⊥x轴,BnAn+1⊥y轴,若点A1的横坐标为﹣1,则点A2017的坐标为(
A.(﹣1,﹣2)
B.(2,1)
C.( ,﹣
D.( ,﹣2)

查看答案和解析>>

同步练习册答案