精英家教网 > 初中数学 > 题目详情

【题目】如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心, AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:D是 的中点;
(2)求证:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.

【答案】
(1)证明:∵AC是⊙O的直径,

∴∠AEC=90°,

∴AE⊥BC,

∵OD∥BC,

∴AE⊥OD,

∴D是 的中点;


(2)证明:

方法一:

如图,延长OD交AB于G,则OG∥BC,

∴∠AGD=∠B,

∵∠ADO=∠BAD+∠AGD,

又∵OA=OD,

∴∠DAO=∠ADO,

∴∠DAO=∠B+∠BAD;

方法二:

如图,延长AD交BC于H,

则∠ADO=∠AHC,

∵∠AHC=∠B+∠BAD,

∴∠ADO=∠B+∠BAD,

又∵OA=OD,

∴∠DAO=∠B+∠BAD;


(3)解:∵AO=OC,

∴SOCD= SACD

∵∠ACD=∠FCE,∠ADC=∠FEC=90°,

∴△ACD∽△FCE,

即:

∴CF=2.


【解析】(1)由AC是⊙O的直径,即可求得OD∥BC,又由AE⊥OD,即可证得D是 的中点;(2)首先延长OD交AB于G,则OG∥BC,可得OA=OD,根据等腰三角形的性质,即可求得∠DAO=∠B+∠BAD;(3)由AO=OC,SOCD= SACD , 即可得 ,又由△ACD∽△FCE,根据相似三角形的面积比等于相似比的平方,即可求得CF的长.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆周角定理的理解,了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数 与二次函数 在同一坐标系中的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班毕业晚会设计了即兴表演节目的摸球游戏,在一个不透明的盒子里装有4个分别标有数字1、2、3、4的乒乓球,这些球除数字外,其它完全相同.晚会上每位同学必须且只能做一次摸球游戏.游戏规则是:从盒子里随机摸出一个球,放回搅匀后,再摸出一个球,若第二次摸出的球上的数字小于第一次摸出的球上的数字,就要给大家即兴表演一个节目.
(1)参加晚会的同学性别比例如图,女生有18人,则参加晚会的学生共有多少人;
(2)用列表法或树形图法求出晚会的某位同学即兴表演节目的概率;
(3)估计本次晚会上有多少名同学即兴表演节目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KDGE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE= ,AK=2 ,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭,8月份比7月份节约用水情况统计:

节水量(m3

0.2

0.3

0.4

0.5

家庭数(个)

1

2

3

4

那么这10个家庭8月份比7月份的节水量的平均数是(
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.
(1)求证:AB是⊙O的切线;
(2)若∠A=60°,DF= ,求⊙O的直径BC的长.

查看答案和解析>>

同步练习册答案