精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.
(1)求证:AB是⊙O的切线;
(2)若∠A=60°,DF= ,求⊙O的直径BC的长.

【答案】
(1)证明:∵CD=CB,

∴∠CBD=∠CDB,

∵AB是⊙O的直径,

∴∠CEB=90°,

∴∠CBD+∠BCE=∠CDB+∠DCE,

∴∠BCE=∠DCE,

即∠BCD=2∠BCE,

∵∠BCD=2∠ABD,

∴∠ABD=∠BCE,

∴∠CBD+∠ABD=∠CBD+∠BCE=90°,

∴CB⊥AB,

∵CB为直径,

∴AB是⊙O的切线


(2)解:∵∠A=60°,DF=

∴在Rt△AFD中,AF= = =1,BF=DFtan60°= × =3,

∵DF⊥AB,CB⊥AB,

∴DF∥BC,

∴∠ADF=∠ACB,

∵∠A=∠A,

∴△ADF∽△ACB,

=

=

∴CB=4


【解析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF= ,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例即可求得BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心, AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:D是 的中点;
(2)求证:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是(
A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大
C.四边形ABCD的面积不变
D.四边形ABCD的周长不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.

(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),
请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.

(1)填空:∠BAD与∠ACB的数量关系为
(2)求 的值;
(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC的长.

查看答案和解析>>

同步练习册答案