精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的两个实数根,且m<n.

(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.

【答案】
(1)

解:解方程x2﹣6x+5=0,

得x1=5,x2=1,

由m<n,知m=1,n=5,

∴A(1,0),B(0,5),

,即

所求抛物线的解析式为y=﹣x2﹣4x+5.


(2)

解:

由﹣x2﹣4x+5=0,

得x1=﹣5,x2=1,

故C的坐标为(﹣5,0),

由顶点坐标公式,得D(﹣2,9);

过D作DE⊥x轴于E,得E(﹣2,0),

∴SBCD=SCDE+S梯形OBDE﹣SOBC= =15.

(注:延长DB交x轴于F,由SBCD=SCFD﹣SCFB也可求得)


(3)

解:设P(a,0),则H(a,﹣a2﹣4a+5);

直线BC把△PCH分成面积相等的两部分,须且只须BC等分线段PH,亦即PH的中点,

)在直线BC上,

易得直线BC方程为:y=x+5;

解之得a1=﹣1,a2=﹣5(舍去),

故所求P点坐标为(﹣1,0).


【解析】(1)通过解方程可求出m、n的值,也就求出了点A、B的坐标,将它们代入抛物线的解析式中,通过联立方程组即可求得待定系数的值,从而确定该抛物线的解析式.(2)抛物线的解析式中,令y=0可求得C点坐标,利用公式法可求出抛物线顶点D的坐标;由于△BCD的面积无法直接求得,可过D作x轴的垂线,设垂足为E,分别求出△CDE、梯形DEOB、△BCO的面积,那么△CDE、梯形DEOB的面积和减去△BCO的面积,即可得到△BCD的面积.(3)若直线BC平分△PCH的面积,那么直线BC必过PH的中点,因为只有这样平分所得的两个三角形才等底等高,可设出点P的坐标,根据抛物线的解析式可表示出点H的坐标,进而可求得PH中点的坐标,由于PH中点在直线BC上,可将其代入直线BC的解析式中,由此求出点P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.
(1)求证:△BDE∽△CFD;
(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;
(3)当△AOF是等腰三角形时,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:折纸中的数学
动手操作:
如图,将矩形ABCD折叠,点B落在AD边上的点B′处,折痕为GH,再将矩形ABCD折叠,点D落在B′H的延长线上,对应点为D′,折痕为B′E,延长GH于点F,O为GE的中点.
数学思考:

(1)猜想:线段OB′与OD′的数量关系是(不要求说理或证明).
(2)求证:四边形GFEB′为平行四边形;
(3)拓展探究:
如图2,将矩形ABCD折叠,点B对应点B′,点D对应点为D′,折痕分别为GH、EF,∠BHG=∠DEF,延长FD′交B′H于点P,O为GF的中点,试猜想B′O与OP的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y= 在第一象限内的图象交于点B( ,n).连接OB,若SAOB=1.
(1)求反比例函数与一次函数的关系式;
(2)直接写出不等式组 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小学三年级到六年级的全体学生参加“礼仪”知识测试,试题共有10题,每题10分.从中随机抽取了部分学生的成绩进行统计,发现抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.

成绩情况统计表

成绩

100分

90分

80分

70分

60分

人数

21

40

5

频率

0.3

根据图表中提供的信息,回答下列问题:
(1)请将统计表补充完整
成绩情况统计表

成绩

100分

90分

80分

70分

60分

人数

21

40

5

频率

0.3


(2)测试学生中,成绩为80分的学生人数有 名;众数是 分;中位数是 分;
(3)若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有 名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.
(1)求证:△AOE≌△COD;
(2)若∠OCD=30°,AB= ,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“元旦”期间,某商场为了吸引顾客购物消费,设计了如图所示的一个转盘,转盘平均分成3份.
(1)求转动该转盘一次所得的颜色是黄色的概率;
(2)请用列表法或画树状图的方法来说明转动该转盘两次,两次所得的颜色相同的概率.
(3)该商场设计了如下两种奖励方案:方案一,转动该转盘一次,若转得的颜色是黄色则可得奖;方案二,转动该转盘两次,若两次转得的颜色相同则可得奖。如果你是顾客,你选择哪种方案比较划算?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y= x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与ABCO的边相切时,P点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2x+1)x+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1 , x2 , 当k=1时,求x12+x22的值.

查看答案和解析>>

同步练习册答案