精英家教网 > 初中数学 > 题目详情

如图,矩形纸片ABCD,AD=BC=3,AB=CD=9,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK,则对△MNK的叙述正确的个数是:
①△MNK一定是等腰三角形;
②△MNK可能是钝角三角形;
③△MNK有最小面积且等于4.5;
④△MNK有最大面积且等于7.5.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:①首先根据矩形的性质可得AM∥DN,再根据平行线的性质可得∠KNM=∠1,由折叠可得∠KMN=∠1,进而得到∠KNM=∠KMN,根据等角对等边可得KN=KM,得到△MNK是等腰三角形;
②利用将矩形纸片沿对角线AC对折,此时折痕为AC,即可得出△MNK是钝角三角形;
③根据当KN=AD=3时,△MNK最小面积求出即可;
④此题要分两种情况进行讨论:①将矩形纸片对折,使点B与点D重合,此时点K也与点D重合;②将矩形纸片沿对角线AC对折,此时折痕为AC,分别进行计算即可.
解答:①如图,∵四边形ABCD是矩形,
∴AM∥DN,
∴∠KNM=∠1.
∵∠KMN=∠1,
∴∠KNM=∠KMN.
∴KN=KM,
∴△MNK是等腰三角形,故此选项正确;
②如图3,△MNK可是钝角三角形,故此选项正确;
③如图1,当KN=AD=3时,△MNK最小面积为:×3×3=4.5,故此选项正确;
④分两种情况:
情况一:如图2,将矩形纸片对折,使点B与点D重合,此时点K也与点D重合.
设MK=MD=x,则AM=9-x,
在Rt△DAM中,由勾股定理,得x2=(9-x)2+32
解得,x=5.
即MD=ND=5,
故S△MNK=S梯形AMND-S△ADM=9×3×-4×3×=7.5.
情况二:如图3,将矩形纸片沿对角线AC对折,此时折痕为AC.
设MK=AK=CK=x,则DK=9-x,
同理可得x2=(9-x)2+32
解得:x=5,
即MK=NK=5.
故S△MNK=S△DAC-S△DAK=×9×3-×4×3=7.5,故此选项正确;
故正确的有4个.
故选:D.
点评:此题主要考查了翻折变换(折叠问题),矩形的性质,勾股定理,三角形的面积计算,注意分类思想的运用,综合性较强,有一点的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形纸片ABCD中,AB=4,BC=4
3
,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4
3
),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别精英家教网把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(37):2.7 最大面积是多少(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(30):25.3 轴对称变换(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•益阳)如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

同步练习册答案