【题目】已知,中,,是边上一点,作,分别交边,于点,.
(1)若(如图1),求证:.
(2)若,过点作,交(或的延长线)于点.试猜想:线段,和之间的数量关系,并就情形(如图2)说明理由.
(3)若点与重合(如图3),,且.
①求的度数;
②设,,,试证明:.
【答案】(1)证明见解析;(2)猜想:,理由见解析;(3)①;②证明见解析.
【解析】(1)根据平行线的判定,得到,,证明.即可证明.
(2)过点作的平行线交的延长线于点,证明≌得到.
证明四边形是平行四边形,即可得到.
(3)①设,,根据三角形的内角和列出方程,求解即可.
②延长至,使,连结,证明 .根据相似三角形的性质得到
,即可证明.
【解答】(1)∵,,,
∴,,
∴,,,
∴.
∴.
(2)猜想:,理由如下:
过点作的平行线交的延长线于点,
则,
∵,
∴,
又,
∴≌∴.
∵,
∴,
∴四边形是平行四边形,
∴.
(3)①设,
∵,,
∴,
又,即,
∴,即.
②延长至,使,连结,
∵,.
∴ ,
∵,∴,
∴,
而,
∴.
∴,
∴.
∵,,,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图①,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60 m到达点C,测得点B在点C的北偏东60°方向,如图②.
(1)求∠CBA的度数;
(2)求出这段河的宽(结果精确到1 m,参考数据:≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强正在距树AB的20m的点P处从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强前进多少米时,就恰好不能看到CD的树顶D?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,.
(1)如图①,在平面直角坐标系中,以为顶点,为腰在第三象限作等腰,若,求点的坐标;
(2)如图②,为轴负半轴上一个动点,以为顶点,为腰作等腰,过作轴于点,当点沿轴负半轴向下运动时,试问的值是否发生变化?若不变,求其值,若变化,请说明理由;
(3)如图③,已知点坐标为,是轴负半轴上一点,以为直角边作等腰,点在轴上,,设、,当点在轴的负半轴上沿负方向运动时,的和是否发生变化?若不变,求其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,B,C,D,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使.(要求保留作图痕迹)
(3)在直线AB上确定一点P,使的和最短,并写出画图的依据.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一钢架,且,为使钢架更加牢固,需在其内部添加-一些钢管、、,添加的钢管都与相等,则最多能添加这样的钢管( )
A.根B.根C.根D.无数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,则∠DCE= ;并猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(2)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;
(3)已知∠AOB=α,∠COD=β(都是锐角),如图(c),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的大小相等的关系(用含有α,β的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象经过点,与轴分别交于点,点.点是直线上方的抛物线上一动点.
(1)求二次函数的表达式;
(2)连接,,并把沿轴翻折,得到四边形.若四边形为菱形,请求出此时点的坐标;
(3)当点运动到什么位置时,四边形的面积最大?求出此时点的坐标和四边形的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com