精英家教网 > 初中数学 > 题目详情

如图,已知抛物线与x轴交于A,B两点,对称轴为直线,直线AD交抛物线于点D(2,3).

(1)求抛物线的解析式;
(2)已知点M为第三象限内抛物线上的一动点,当点M在什么位置时四边形AMCO的面积最大?并求出最大值;
(3)当四边形AMCO面积最大时,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

(1)抛物线的解析式为. 
(2) 当点M为(-2,-3)时四边形AMCO面积有最大值,最大值为8.
(3) 存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆,点Q的坐标为(﹣2,4)或(﹣2,﹣1).  

解析试题分析:(1)由待定系数法即可得;
(2)连接OM,则四边形AMCO可分为两个三角形,设M点的坐标,则可表示出两个三角形的面积,进而可得到面积的最大值
(3)可以先假设存在这样的点,然后根据题中的条件进行计算即可
试题解析:(1)∵抛物线的对称轴是直线,
,解得.
∵抛物线经过D(2,3),
,解得.
∴抛物线的解析式为.
(2)抛物线的解析式为:,
令x=0,得y=﹣2,∴C(0, -2).
令y=0,得x=﹣4或1,∴A(-4,0)、B(1,0).
设点M坐标为(m,),连接MO.
则S四边形AMCO=S△AMO+S△CMO


∴当m=﹣2时,=-3
∴当点M为(-2,-3)时四边形AMCO面积有最大值,最大值为8.  

(3)假设存在这样的⊙Q.
设直线x=﹣2与x轴交于点G,与直线BC交于点F.设直线BC的解析式为y=kx+b,
将B(1,0)、C(0,﹣2)代入得:
,解得:k=2,b=﹣2,
∴直线BC解析式为:y=2x﹣2,
令x=﹣2,得y=﹣6,∴F(﹣2,﹣6),GF=6.
在Rt△BGF中,由勾股定理得:
,
设Q(﹣2,n),则在Rt△QGO中,由勾股定理得:
.
设⊙Q与直线BC相切于点E,则QE=OQ=
在Rt△BGF与Rt△QEF中,
∵∠BGF=∠QEF=90°,∠BFG=∠QFE,
∴Rt△BGF∽Rt△QEF.
,即.
化简得:n2﹣3n﹣4=0,解得n=4或n=﹣1.
∴存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆,点Q的坐标为(﹣2,4)或(﹣2,﹣1).

考点:1、待定系数法;2、二次函数的性质;3、勾股定理;4、切线的性质

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转180°,所得抛物线的解析式为                     

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数)。
其中正确结论的序号有     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3).
(1)求二次函数的表达式;
(2)如果一次函数y=4x+m的图象与二次函数的图象有且只有一个公共点,求m的值和该公共点的坐标;
(3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=-1求该抛物线与x轴的交点坐标;
(2)若a=,c=2+b且抛物线在区间上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x一元二次方程有两个不相等的实数根
(1)求k取值范围;
(2)当k最小的整数时,求抛物线的顶点坐标以及它与x轴的交点坐标;
(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线有三个不同公共点时m值.

查看答案和解析>>

科目:初中数学 来源: 题型:计算题

如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

【小题1】直接写出点M及抛物线顶点P的坐标;
【小题2】求这条抛物线的解析式;
【小题3】若要搭建一个矩形“支撑架”AD- DC- CB,
使C、D点在抛物线上,A、B点在地面OM上,

查看答案和解析>>

同步练习册答案