【题目】如图,在平面直角坐标系中,点、的坐标分别为、,点在第一象限内,连接、.已知,则_________.
【答案】
【解析】
过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证CDE≌CDB(ASA),进而可得DE=DB=4-n,再证AOE∽CDE,进而可得,由此计算即可求得答案.
解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,
∴∠DCE=∠CAO,
∵∠BCA=2∠CAO,
∴∠BCA=2∠DCE,
∴∠DCE=∠DCB,
∵CD⊥y轴,
∴∠CDE=∠CDB=90°,
又∵CD=CD,
∴CDE≌CDB(ASA),
∴DE=DB,
∵B(0,4),C(3,n),
∴CD=3,OD=n,OB=4,
∴DE=DB=OB-OD=4-n,
∴OE=OD-DE
=n-(4-n)
=2n-4,
∵A(-4,0),
∴AO=4,
∵CD∥AO,
∴AOE∽CDE,
∴ ,
∴,
解得:,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象在第一象限内交于点A,B,且该一次函数的图象与y轴正半轴交于点C,过A,B分别作y轴的垂线,垂足分别为D,E.已知A(1,4),=.
(1)求m的值和一次函数的解析式;
(2)若点M为反比例函数图象在A,B之间的动点,作射线OM交直线AB于点N,当MN长度最大时,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.
(1)求这条抛物线的解析式,并写出顶点坐标;
(2)求∠ACB的正切值;
(3)当△AOE与△ABC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点,...,按此做法进行下去,则的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA表示小明与甲地的距离y1(米)与行走的时间x(分钟)之间的函数关系:折线BCDA表示小亮与甲地的距离y2(米)与行走的时间x(分钟)之间的函数关系.请根据图象解答下列问题:
(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;
(2)线段OA与BC相交于点E,求点E坐标;
(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.
(1)求证:△ABF是等边三角形;
(2)若∠CDF=45°,CF=2,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com