分析 根据DP∥AB,AP∥BC,得出四边形ABDP是平行四边形,AP=BD,再根据BD=CD,得出AP=CD,四边形APCD是平行四边形,最后根据∠ADC=90°,即可证出四边形APCD是矩形;
解答 解:∵AB=AC,∠BAD=∠CAD,
∴AD⊥BC,
∴∠ADB=90°,
∵AP平分∠FAC,
∴∠PAD=∠ADB=90°,
∴AP∥BC;
∵DP∥AB,
∴四边形ABDP是平行四边形,
∴AP=BD,
∵BD=CD,
∴AP=CD,
∴四边形APCD是平行四边形,
∵∠ADC=90°,
∴四边形ADCP是矩形;
点评 此题考查了矩形的判定和性质的综合应用,用到的知识点是平行四边形的判断与性质、等腰三角形的性质、平行线的性质,关键是综合利用有关性质,得出结论,是中考命题的热点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-2,2$\sqrt{2}$) | B. | (-2$\sqrt{2}$,2) | C. | ($\sqrt{2}$,-$\sqrt{2}$) | D. | (-$\sqrt{2}$,$\sqrt{2}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | △AEF≌△CED | B. | CF=AD | C. | AF=CD | D. | BF=CF |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①③④ | B. | ①②③ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com