精英家教网 > 初中数学 > 题目详情
15.如图,在△ABC中,∠ACB=90°,AC=8,BC=6,P是直线AB上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,B′A长度的最小值是m,B′A长度的最大值是n,则m+n的值等于16.

分析 先判断出B′A长度的最大值和B′A长度的最小值的位置,最后简单计算即可.

解答 解:如图,∵点P是直线AB上的动点,
∴△BCP沿CP所在的直线翻折得到△B'CP,点B落在以点C为圆心,BC为半径的圆上,
∴CM=CN=BC=6,
圆外一点到圆上的点的距离最大和最小的点是圆外一点过圆心的直线和圆的交点,
延长AC交圆于M,
∴B′A长度的最小值是m=AN=AC-CN=8-6=2,
B′A长度的最大值是n=AM=AC+CM=8+6=14,
∴m+n=14+2=16;
故答案为16.

点评 此题是折叠问题,主要考查了圆的性质,极值,求出m和n是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=(  )
A.4cmB.5cmC.6cmD.7cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,已知点P是反比例函数y=-$\frac{2\sqrt{3}}{x}$图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)当⊙P运动到与x轴也相切于K点时,如图1,试判断四边形OAPK的形状,并说明理由;
(2)当⊙P运动到与x轴相交于B、C两点时,且四边形ACBP为菱形,如图2,求A、B、C三点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F处.
(1)直接写出点E,F的坐标;
(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.
(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=$\frac{底边}{腰}=\frac{BC}{AB}$.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=1.
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2.
(3)如图②,Rt△ABC中,已知sinA=$\frac{3}{5}$,其中∠A为锐角,试求sadA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.

(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),证明:△ACF≌△ABD
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;
(3)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+$\frac{9}{4}$经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.E为正方形ABCD的边CD上一点,将△ADE绕A点顺时针旋转90°,得△ABF,G为EF中点.下列结论:①G在△ABF的外接圆上;②EC=$\sqrt{2}$BG;③B,G,D三点在同一条直线上;④若S四边形BGEC=$\frac{1}{4}$S正方形ABCD,那么E为DC的黄金分割点.正确的是(  )
A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直角坐标系中,O为原点,A(6,0),在等腰三角形ABO中,OB=BA=5,点B在第一象限,C(0,k)为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连结AD.
(1)①求点B的坐标;②若BD∥OC,求k的值.
(2)求证:OC=AD;
(3)设直线AD与y轴交于点M(0,m),当点C在y轴上运动时,点M的位置是否改变?若改变,求m与k的函数关系式,若不变,求m的值.

查看答案和解析>>

同步练习册答案