【题目】阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
(1)的值为 ;
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
求的值;
若CD=2,求BP的长.
【答案】(1);(2)①,②6.
【解析】试题分析:(1)根据辅助线的作法可得△AEF≌△CEB,△AFP∽△DBP,然后利用它们的性质可得=;(2)①过点A作AF∥DB,交BE的延长线于点F,可得△AEF≌△CEB,△AFP∽△DBP,然后利用它们的性质可得=;②根据条件DC:BC:AC=1:2:3 ,CD=2,得出BC, AC,CE,AE的长,由勾股定理可得EF的长,再利用△AFP∽△DBP的性质可求出BP的长.
试题解析:(1)的值为.
(2)①过点A作AF∥DB,交BE的延长线于点F,
∵DC︰BC=1︰2,
∴BC=2k.
∴DB=DC+BC=3k.
∵E是AC中点,
∴AE=CE.
∵AF∥DB,
∴∠F=∠1.
又∵∠2=∠3,
∴△AEF≌△CEB.
∴AF=BC=2k.
∵AF∥DB,
∴△AFP∽△DBP.
∴.
∴=.
②∵DC:BC:AC=1:2:3 ,CD=2,∴BC=4 AC=6
∴CE=AE=AC =3
∴ 由勾股定理可得:EF=5,∴BF=10
∵=,△AFP∽△DBP,
∴
∴BP=6
科目:初中数学 来源: 题型:
【题目】如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA = 75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB =∠ACB = 37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).
(1)求正比例函数与一次函数的关系式;
(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;
(3)在x轴上是否存在一点E使△BCE周长最小,若存在,求出点E的坐标
(4)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度数;
(2)求证:CE=BH.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com