精英家教网 > 初中数学 > 题目详情

【题目】已知(a+b2=144 a-b2=36 ab=______a2 + b2=_______

【答案】27 90

【解析】

根据题意利用完全平方公式展开,再用加减法求解即可.

解:∵(a+b2= a2+b2+2ab=144,①

a-b2= a2+b2-2ab=36,②

-②得:4ab=108

ab=27

+②得:2a2+b2=180

a2+b2=90.

故答案为:2790.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-201,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(xy)

1写出点Q所有可能的坐标;

2求点Qx轴上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程x2x+a=0有实根.

1)求a的取值范围;

2)设x1x2是方程的两个实数根,且满足(x1+1)(x2+1=﹣1,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:如图1,在ABC中,BEAC边上的中线, DBC边上的一点,CDBD=12ADBE相交于点P,求的值.小昊发现,过点AAFBC,交BE的延长线于点F,通过构造AEF,经过推理和计算能够使问题得到解决(如图2).

1的值为

2)参考小昊思考问题的方法,解决问题:

如图3,在△ABC中,∠ACB=90°,点DBC的延长线上,ADAC边上的中线BE的延长线交于点PDCBCAC=123

的值;

CD=2,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.

(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;

(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)

(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表示为(  )
A.1.694×104
B.1.694×105
C.1.694×106
D.1.694×107

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ΔABC的边AB=8cm,周长为18cm,当边BC=________cm时,ΔABC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1问题背景

如图1在四边形ABCDABADBAD120°BADC90°EF分别是BCCD上的点EAF60°探究图中线段BEEFFD之间的数量关系

小王同学探究此问题的方法是延长FD到点G使DGBE连结AG先证明ABE≌△ADG再证明AEF≌△AGF可得出结论他的结论应是

2探索延伸

如图2若在四边形ABCDABADBD180°EF分别是BCCD上的点EAFBAD上述结论是否仍然成立并说明理由

3结论应用

如图3在某次军事演习中舰艇甲在指挥中心(O处)北偏西30°A舰艇乙在指挥中心南偏东70°B并且两舰艇到指挥中心的距离相等.接到行动指令后舰艇甲向正东方向以60海里/小时的速度前进舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后指挥中心观测到甲、乙两舰艇分别到达EF且两舰艇与指挥中心O之间夹角EOF=70°试求此时两舰艇之间的距离

4能力提高

如图4等腰直角三角形ABCBAC90°ABACMN在边BCMAN45°.若BM1CN3试求出MN的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于 两点,交轴于点,直线经过坐标原点,与抛物线的一个交点为,与抛物线的对称交于点,连接,点 的坐标分别为

)求抛物线的解析式,并分别求出点和点的坐标.

)在抛物线上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案