【题目】在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.
(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;
(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)
(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.
【答案】(1)(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由见解析;(2)y=;(3)△DEF与△CDE相似.理由见解析.
【解析】试题分析:1)由等腰三角形的性质得出∠B=∠C,∠ADB=∠ADC=90°,因此△ABD∽△ACD,证出∠PDQ=∠C,由∠DAE=∠CAD,得出△ADE∽△ACD;在证出△CDE∽△CAD,即可得出结果;
(2)证出△BDF∽△CDE,得出对应边成比例,即可得出y与x的函数关系式;
(3)由(2)可知:△BDF∽△CDE,得出证出,由∠EDF=∠C,即可得出△DEF∽△CED.
试题分析:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:
∵AB=AC,D为底边BC的中点,
∴∠B=∠C,AD⊥BC,
∴∠ADB=∠ADC=90°,
∴△ABD∽△ACD,
∵∠PDQ=∠B,
∴∠PDQ=∠C,
又∵∠DAE=∠CAD,
∴△ADE∽△ACD;
∵∠CDE+∠PDQ=90°,
∴∠C+∠PDQ=90°,
∴∠CED=90°=∠ADC,
又∵∠C=∠C,
∴△CDE∽△CAD,
∴△△ABD∽△ACD∽△ADE∽△CDE;
(2)∵∠FDC=∠B+∠BDF,
∠FDC=∠FDE+∠EDC,
∴∠EDC=∠BDF,
∴△BDF∽△CDE,
∴,
∵D为BC的中点,
∴BD=CD=6,
∴
∴y=;
(3)△DEF与△CDE相似.理由如下:如图所示:
由(2)可知:△BDF∽△CDE,
则,
∵BD=CD,
∴,
又∵∠EDF=∠C,
∴△DEF∽△CED.
科目:初中数学 来源: 题型:
【题目】下列各组线段能组成一个三角形的是( ).
A.3cm,3cm,6cmB.2cm,3cm,6cm
C.5cm,8cm,12cmD.4cm,7cm,11cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论是( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了追求更合适的出行体验,利用网络呼叫专车的打车方式受到大众欢迎.据了解在非高峰期时,某种专车所收取的费用(元)与行驶里程 的函数关系如图所示,请根据图象解答下列问题:
()求与之间的函数关系式.
()若专车低还行驶(时速),每分钟另加元的低速费(不足分钟的部分按分钟计算).某乘客有一次在非高峰期乘坐专车,途中低速行驶了分钟,共付费元,求这位乘客坐专车的行驶里程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com