精英家教网 > 初中数学 > 题目详情

【题目】代数式:①-x;②x2+x-1;③;④;⑤;⑥πm3y;⑦

1)请上述代数式的序号分别填在相应的圆圈内:

2)其中次数最高的多项式是___________________项式;

3)其中次数最高的单项式的次数是____________,系数是____________

【答案】1)多项式:②④⑧;单项式:①⑤⑥;2)二;三;3π4

【解析】

1)直接利用多项式以及单项式定义分析即可;

2)直接利用多项式的次数确定方法分析得出答案;

3)直接利用单项式的次数与系数确定方法分析即可.

1)根据整式的分类得:多项式:②④⑧;单项式:①⑤⑥;

2)次数最高的多项式x2+x-1,为二次三项式,

故答案为:二;三;

3)次数最高的单项式为πm3y,的次数是4,系数是π

故答案为:4π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,BC=2,BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:

若C、O两点关于AB对称,则OA=2

C、O两点距离的最大值为4;

若AB平分CO,则AB⊥CO;

斜边AB的中点D运动路径的长为

其中正确的是_____(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的形变度.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的形变度2.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,AEFAEF是格点)同时形变为A′E′F′,若这个菱形的形变度”k,则SA′E′F′__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC90°,ABBC,三角形的顶点在相互平行的三条直线l1l2l3上,且l1l2之间的距离为2l2l3之间的距离为3,则AC的长是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图1至图3直线MN与线段AB相交于点O,∠1=∠2=45°.

(1)如图1,AO=OB请写出AOBD的数量关系和位置关系

(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证AC=BDACBD

(3)将图2中的OB拉长为AOk倍得到图3,的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别相交于.点的坐标为,点是线段上的一点.

1)求的值;(2)若的面积为2,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×qp,q是正整数,且pq,在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:Fn=,例如12可以分解成1×12,2×6或3×4,因为12-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有Fm=1.

2如果一个两位正整数t,t=10x+y1xy9,x,y为自然数,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为吉祥数,求所有吉祥数中Ft的最大值.

查看答案和解析>>

同步练习册答案