精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,ECD上一点,FBC延长线上一点,CE=CF.

(1)△DCF可以看作是△BCE绕点C旋转某个角度得到的吗?

(2)若∠CEB=60°,求∠EFD的度数.

【答案】(1)△DCF可以看作是△BCE绕点C旋转90°而得到的图形;(2)∠EFD=15°.

【解析】试题分析:(1)可利用边角边证明△DCF≌△BCE,从而即可得;

(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.

试题解析(1)∵四边形ABCD是正方形,

∴DC=BC,∠DCB=∠FCE=90°,

在△DCF和△BCE中,

∴△DCF≌△BCE(SAS),

∴△DCF可以看作是△BCE绕点C旋转90°而得到的图形;

(2)∵△BCE≌△DCF,

∴∠DFC=∠BEC=60°,

∵CE=CF,

∴∠CFE=45°,

∴∠EFD=15°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,CBA=45°,求AB的距离.(1.41, 1.73,结果取整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数的图象经过点,过点A轴于点B,连结

1)求k的值;

2)如图,若直线经过点A,与x轴相交于点C,且满足.求:

①直线的表达式;

②记直线与双曲线的另一交点为,试求的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的图象过A(2,0), B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;

(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;

(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了幻圆游戏,现在将﹣12、﹣34、﹣56、﹣78分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为(  )

A. 6或﹣3 B. 81 C. 1或﹣4 D. 1或﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, ,矩形ABCD的顶点AB分别在OMON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2BC=1,则运动过程中,点C到点O的最大距离为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数aB点示数bC点表示数cb是最小的正整数,且ac满足|a+2|+c720

1a   b   c   

2)点ABC开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB   AC   BC   ;(用含t的代数式表示)

3)请问:3AC5AB的值是否随着时间t的变化而改变?若变化,请说明理由:若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A20的坐标为 (  )

A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)

(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;

(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.

查看答案和解析>>

同步练习册答案