【题目】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:a=________;b=________;m=________.
(2)若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.
【答案】见解析
【解析】
(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;
(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;
(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论.
解:(1)1500÷150=10(分钟),
10+5=15(分钟),
(3000-1500)÷(22.5-15)=200(米/分),
故答案为:10;15;200.
(2)线段BC所在直线的函数解析式为y=1500+200(x-15)=200x-1500;
线段OD所在的直线的函数解析式为y=120x,
联立,
解得:,
则小军第二次与爸爸相遇时距图书馆的距离是3000-2250=750(米);
答:小军第二次与爸爸相遇时距图书馆的距离是 750 米;
(3)爸爸自第二次出发后,骑行一段时间后与小军相距 100 米,此时小军骑行的时间为 x分钟,
|120x-[1500+(x-15)×200]|=100,
解得,x=17.5,或x=20,
故答案为:17.5 或 20.
科目:初中数学 来源: 题型:
【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130°
B.150°
C.160°
D.170°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某新建火车站站前广场需要绿化的面积为46000米2 , 施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2 , 两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)
B.(3,1)
C.(2,2)
D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于 点D,OB=4,AD=3
(1)求反比例函数y= 的解析式;
(2)若直线y=﹣x+m与反比例函数y= (x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M ①则m的取值范围为(请直接写出结果)
②求MEMF的值 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com