精英家教网 > 初中数学 > 题目详情

如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.

60
分析:由MN与⊙O相切,根据弦切角定理,即可求得∠C的度数,又由BC是⊙O的直径,根据圆周角定理,可求得∠BAC=90°,继而求得答案.
解答:∵MN与⊙O相切,∠MAB=30°,
∴∠C=∠MAB=30°,
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠B=90°-∠C=60°.
故答案为:60.
点评:此题考查了弦切角定理与圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.

查看答案和解析>>

同步练习册答案