精英家教网 > 初中数学 > 题目详情

【题目】如图,点O是等边三角形ABC内的一点,∠BOC150°,将△BOC绕点C按顺时针旋转得到△ADC,连接ODOA

(1)求∠ODC的度数;

(2)若OB2OC3,求AO的长.

【答案】(1)60°;(2)

【解析】

1)根据旋转的性质得到三角形ODC为等边三角形即可求解;

2)在RtAOD中,由勾股定理即可求得AO的长.

1)由旋转的性质得:CD=CO,∠ACD=BCO

∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;

2)由旋转的性质得:AD=OB=2

∵△OCD为等边三角形,∴OD=OC=3

∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°.

RtAOD中,由勾股定理得:AO

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠C90°,ACBC,将△ABC绕点A顺时针方向旋转60°到△ABC的位置,连接C'B

(1)求∠ABC'的度数;

(2)C'B的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对x牵手函数,这个交点为x牵手点

1)一次函数yx1x轴的交点坐标为  ;一次函数yax+2与一次函数yx1为一对x牵手函数,则a 

2)已知一对x牵手函数yax+1ybx1,其中ab为一元二次方程x2kx+k40的两根,求它们的x牵手点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知AOB是等边三角形,点A的坐标是(03),点B在第一象限,∠OAB的平分线交x轴于点P,把AOP绕着点A按逆时针方向旋转,使边AOAB重合,得到ABD,连接DP.求:DP的长及点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MPOA,交AC于P,连接NP,已知动点运动了x秒.

(1)求P点的坐标(用含x的代数式表示);

(2)试求NPC面积S的表达式,并求出面积S的最大值及相应的x值;

(3)设四边形OMPC的面积为S1,四边形ABNP的面积为S2,请你就x的取值范围讨论S1与S2的大小关系并说明理由;

(4)当x为何值时,NPC是一个等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于两点,轴交于点.在函数图象上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.

(1)的值;

(2)如图①,连接 线段上的点关于直线的对称点F'恰好在线段BE上,求点的坐标;

(3)如图②,动点在线段上,过点轴的垂线分别与交于点,与抛物线交于点.试问:直线右侧的抛物线上是否存在点,使得的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD,BAD=60°,对角线ACBD相交于点O将其绕着点O顺时针旋转90°得到菱形A‘B’C‘D’.AB=1,则旋转前后两菱形重叠部分图形的周长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边ABxm

1)用含有x的式子表示AD,并写出x的取值范围;

2)若苗圃园的面积为192m2平方米,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠BAC120°,点OBC上,⊙O经过点A,点C,且交BC于点D,直径EFAC于点G

1)求证:AB是⊙O的切线;

2)若AC8,求BD的长.

查看答案和解析>>

同步练习册答案