精英家教网 > 初中数学 > 题目详情
17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中$x=\sqrt{2}$,$y=3+\sqrt{2}$.

分析 原式中括号中利用完全平方公式及平方差公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.

解答 解:原式=(x2-2xy+y2+x2-y2)÷2x=(2x2-2xy)÷2x=x-y,
当x=$\sqrt{2}$,y=3+$\sqrt{2}$时,原式=$\sqrt{2}$-3-$\sqrt{2}$=-3.

点评 此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标中标出下列各点A(5,1),B(5,0),C(2,1),D(2,3)并顺次连接,求出所得图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图形:

其中是轴对称图形的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若$\sqrt{x-1}$和$\sqrt{1-x}$在实数范围内都有意义,则x的取值是(  )
A.x≥1B.x≤1C.x=1D.-1≤x≤1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.我们学习了整式的乘法后,可进行如下计算:(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3

如果我们对(a+b)n (n取正整数)的计算结果中各项系数进一步研究,可以列出下表:
(a+b)1=a+b11
(a+b)2=a2+2ab+b2121
(a+b)3=a3+3a2b+3ab2+b31331
上表称为“杨辉三角”,揭示了二项式乘方展开式的规律.
(1)请仔细观察表中的规律,写出(a+b)4展开式中所缺的系数:(a+b)4=a4+a3b+a2b2+ab3+b4
(2)请写出(a+b)5的展开式:(a+b)5=(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
(3)当n=1、2、3、4、…时,(a+b)n展开式的第三项系数分别为0、1、3、6、…,猜想(a+b)n展开式的第三项系数为$\frac{n(n-1)}{2}$(用含n的代数式表示);
(4)当n=1、2、3、4、…时,(a+b)n展开式的各项系数之和分别为2、4、8、16、…,猜想(a+b)n展开式的各项系数之和为2n(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.化简
(1)$\sqrt{18}×\sqrt{2}$-5            
(2)$\sqrt{8}$+$\sqrt{32}$-$\sqrt{2}$
(3)$\sqrt{\frac{1}{7}}$+$\sqrt{28}$-$\sqrt{700}$
(4)($\sqrt{5}$-$\sqrt{7}$)($\sqrt{5}$+$\sqrt{7}$)+2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是(  )
A.10cmB.15cmC.20cmD.25cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案