精英家教网 > 初中数学 > 题目详情
如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是

A.3         B.2       C.2       D.
C.

试题分析:延长AC交⊙O于F,连接FD.

∵∠C=90°,DE∥BC,
∴∠DEF=90°,∴FD是圆的直径.
∵AB切⊙O于D,∴FD⊥AB.
∵DE∥BC,∴△ADE∽△ABC.
,即
∴DE=4.
∵∠ADF=90°,DE⊥AF,
∴△ADE∽△DFE,
∴DE2=AE•EF,即42= •EF,
∴EF="4"
∴DF==4
∴半径为2
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,sinA=,OA=10cm,则AB长为        cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O重合,AC=2,求⊙O的半径r;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD。
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.
(1)求证:AB与⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P在以AB为直径的半圆内,连AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法正确的是:

①AC垂直平分BF;②AC平分∠BAF;③PF⊥AB;④BD⊥AF.
A.①②       B.①④        C.②④       D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为(  )
A.3B.4C.5D.15

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,∠B=60°,∠C=70°,则∠BOD的度数是( )
A.90°B.100°C.110°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为(     )
A.3B.4C.D.

查看答案和解析>>

同步练习册答案