精英家教网 > 初中数学 > 题目详情
如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD。
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。
(1)相切 (2)四边形BOCD是菱形 (3)∴底面圆半径     

试题分析:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;
(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到
OC=     ∴弧BC的弧长=  然后根据圆锥的计算求圆锥的底面圆半径.
试题解析(1)AC与⊙O相切        
,∠ACB=120°,∴∠ABC=∠A=30°。
,∠CBO=∠BCO=30°,
∴∠OCA=120°-30°=90°,∴AC⊥OC,
又∵OC是⊙O的半径,
∴AC与⊙O相切。              
(2)四边形BOCD是菱形           
连接OD。
∵CD∥AB,
∴∠OCD=∠AOC=2×30°=60°

∴△COD是等边三角形,

∴四边形BOCD是平行四边形,

∴四边形BOCD是菱形。           
(3)在Rt△AOC中,∠A=30°,AC=6,
ACtan∠A=6tan30°=
∴弧BC的弧长     
∴底面圆半径                 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD•AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O在边长为8的正方形ABCD的AD边上运动(4<C)A<8),以O为圆心,OA长为半径作圆,交CD于点E,连接OE、AE,过点E作直线EF交BC于 点F,且∠CEF=2∠DAE.
(1)求证:直线EF为⊙O的切线;
(2)在点O的运动过程中,设DE=x,解决下列问题:
①求OD·CF的最大值,并求此时半径的长;
②试猜想并证明△CEF的周长为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.
名称
四等分圆的面积
方案
方案一
方案二
方案三
选用的工具
带刻度的三角板
量角器
带刻度的三角板、圆规
 画出示意图

 
 
简述设计方案
作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.
 
 
指出对称性
既是轴对称图形又是中心对称图形
 
 
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是

A.3         B.2       C.2       D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,圆锥底面半径OA=10㎝,母线PA=30㎝.由底面周长上一点A出发绕其侧面一周的最短路线长度是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD是⊙O的内接正方形,点P是上不同于点C的任意一点,则∠BPC的大小是(   )
A.45°B.60°C.75°D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O1和⊙O2外切,半径分别为1cm和3cm,那么半径为5cm且与⊙O1、⊙O2都相切的圆一共可以作出        个.

查看答案和解析>>

同步练习册答案