精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD•AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
(1)见解析   (2)见解析   (3)π
(1)证明:连接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠DAC=∠BAC,
∴∠OCA=∠DAC,
∴OC∥AD,
∵AD⊥EF,
∴OC⊥EF,
∵OC为半径,
∴EF是⊙O的切线.
(2)证明:∵AB为⊙O直径,AD⊥EF,
∴∠BCA=∠ADC=90°,
∵∠DAC=∠BAC,
∴△ACB∽△ADC,
=
∴AC2=AD•AB.
(3)解:∵∠ACD=30°,∠OCD=90°,
∴∠OCA=60°,
∵OC=OA,
∴△OAC是等边三角形,
∴AC=OA=OC=2,∠AOC=60°,
∵在Rt△ACD中,AD=AC=1,
由勾股定理得:DC=
∴阴影部分的面积是S=S梯形OCDA﹣S扇形OCA=×(2+1)×=π.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O重合,AC=2,求⊙O的半径r;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD。
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个扇形的圆心角为120°,半径为3,则这个扇形的面积为  (结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,∠B=60°,∠C=70°,则∠BOD的度数是( )
A.90°B.100°C.110°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED与弧CAD围成的新月形的面积S.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点O1、O2在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm,4cm<O1O2<8cm.⊙O1与⊙O2
不可能出现的位置关系是( )
A.外离 B.外切C.相交D.内切

查看答案和解析>>

同步练习册答案