精英家教网 > 初中数学 > 题目详情
在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.
名称
四等分圆的面积
方案
方案一
方案二
方案三
选用的工具
带刻度的三角板
量角器
带刻度的三角板、圆规
 画出示意图

 
 
简述设计方案
作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.
 
 
指出对称性
既是轴对称图形又是中心对称图形
 
 
 
见解析

试题分析:方案二:根据圆是轴对称图形,(1)以点O为圆心,以3个单位长度为半径作圆;(2)在大⊙O上依次取三等分点A、B、C;(3)连接OA、OB、OC.则小圆O与三等份圆环把⊙O的面积四等分.
方案三:根据既是轴对称图形又是中心对称图形,(1)作⊙O的一条直径AB;(2)分别以OA、OB的中点为圆心,以3个单位长度为半径作⊙O1、⊙O2;则⊙O1、⊙O2和⊙O中剩余的两部分把⊙O的面积四等分。
试题解析:
名称
四等分圆的面积
方案
方案一
方案二
方案三
选用的工具
带刻度的三角板
带刻度三角板、量角器、圆规.
带刻度三角板、圆规.
 画出示意图



简述设计方案
作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.
(1)以点O为圆心,以3个单位长度为半径作圆;
(2)在大⊙O上依次取三等分点A、B、C;
(3)连接OA、OB、OC.
则小圆O与三等份圆环把⊙O的面积四等分.
作⊙O的一条直径AB;
分别以OA、OB的中点为圆心,以3个单位长度为半径作⊙O1、⊙O2
则⊙O1、⊙O2和⊙O中剩余的两部分把⊙O的面积四等分。
指出对称性
既是轴对称图形又是中心对称图形.
轴对称图形
既是轴对称图形又是中心对称图形.
考点:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,sinA=,OA=10cm,则AB长为        cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD。
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)试判断四边形BOCD的形状,并证明你的判断;
(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.
(1)求证:AB与⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.
(1)求证:BM平分∠ABC;
(2)当BC=4,cosC=时,
①求⊙O的半径;
②求图中阴影部分的面积.(结果保留π与根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的顶点A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是(  )

A.30°         B.45°              C.60°           D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的面积为2π,则其内接正三角形的面积为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为

A.4          B.6             C.            D.

查看答案和解析>>

同步练习册答案