精英家教网 > 初中数学 > 题目详情

已知二次函数y=-x2+(m-2)x+m+1,试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点.

证明:令-x2+(m-2)x+m+1=0.
∵△=(m-2)2-4×(-1)×(m+1)=m2+8≥8,即无论m取何值,一元二次方程-x2+(m-2)x+m+1=0都会有两个不相等的实数根;
∴不论m取任何实数,二次函数y=-x2+(m-2)x+m+1的图象与x轴都有两个交点.
分析:要证明二次函数y=-x2+(m-2)x+m+1的图象与x轴始终有两个交点,只需证明关于x的方程y=-x2+(m-2)x+m+1的根的判别式是正数即可.
点评:此题既考查了抛物线与x轴的交点情况.解题的关键是掌握抛物线的交点个数与一元二次方程的根的判别式正负的对应关系才能熟练解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案