精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知直线y=x+3的图象与x、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线l的解析式.
分析:根据直线y=x+3的解析式可求出A、B两点的坐标,如图:
(1)当直线l把△ABO的面积分为S△AOC:S△BOC=2:1时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;
(2)当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同(1).
解答:精英家教网解:由直线y=x+3的解析式可求得A(-3,O)、B(0,3),

如图(1),当直线l把△ABO的面积分为S△AOC:S△BOC=2:1时,
作CF⊥OA于F,CE⊥OB于E,则S△AOB=
9
2
,则S△AOC=3,
1
2
AO•CF=3,即
1
2
×3×CF=3
∴CF=2同理,解得CE=1.
∴C(-1,2),
∴直线l的解析式为y=-2x;精英家教网

如图(2),当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时
同理求得C(-2,1),
∴直线l的解析式为y=-
x
2
(求C点的坐标时亦可用相似的知识求得).
点评:此题比较复杂,考查的是用待定系数法求一次函数的解析式,涉及到三角形的面积公式及分类讨论的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案