精英家教网 > 初中数学 > 题目详情

【题目】如图,CD是线段AB的垂直平分线,则∠CAD= CBD.请说明理由:

:CD是线段AB的垂直平分线,

AC=___ _ =BD. .

在△ACD和△BCD中,

. =BC

AD=_

CD=CD

∴△ACD__ ___ (_ . __) .

∴∠CAD=CBD (_ __ )

【答案】BCADACBD△BCD,边边边,全等三角形对应边相等.

【解析】

由垂直平分线的性质可得AC=BCAD=BD,在△ACD和△BCD中,利用“边边边”判定全等,可得∠CAD=CBD.

解:∵CD是线段AB的垂直平分线,

AC=BCAD=BD

在△ACD和△BCD中,

∴△ACD≌△BCD(边边边)

∴∠CAD=CBD(全等三角形对应角相等)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5BD=4,则以下四个结论中: ①△BDE是等边三角形; AEBC ③△ADE的周长是9 ④∠ADE=BDC.其中正确的序号是(  )

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系中的任意两点P1(x1,y1)P2(x2,y2),我们把|x1x2|+|y1y2|叫做P1P2两点间的直角距离,记作d(P1,P2)

(1) P0(2,3)O为坐标原点,则d(O,P0)

(2)已知O为坐标原点,动点P(x,y)满足d(O,P)1,请写出xy之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,点A在⊙O上,ADBC,垂足为D,AB=AE,BE分别交AD,AC于点F,G.

(1)求证:FA=FG;

(2)BD=DO=2,求弧EC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小组做用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(  )

A. 石头、剪刀、布的游戏中小明随机出的是剪刀

B. 一副去掉大小王的普通扑克牌洗匀后从中任抽一张牌的花色是红桃

C. 暗箱中有1个红球和2个黄球它们只有颜色上的区别从中任取一球是黄球

D. 掷一个质地均匀的正六面体骰子向上的面点数是4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90° DAB上,且CD=BD.

(1)求证:DAB的中点.

(2)CD为对称轴将△ACD翻折至△A'CD,连接BA',若∠DBC=a,求∠CB A'的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形的个数为(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个二次函数满足以下条件:

①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);

②对称轴是x=3;

③该函数有最小值是﹣2.

(1)请根据以上信息求出二次函数表达式;

(2)将该函数图象xx2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,活动课上,小玥想要利用所学的数学知识测量某个建筑地所在山坡AE的高度,她先在山脚下的点E处测得山顶A的仰角是30°,然后,她沿着坡度i=1:1的斜坡按速度20/分步行15分钟到达C处,此时,测得点A的俯角是15°.图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上,求出建筑地所在山坡AE的高度AB.(精确到0.1米,参考数据:≈1.41).

查看答案和解析>>

同步练习册答案