精英家教网 > 初中数学 > 题目详情

已知二次函数图像与y轴交于点(0,-4),并经过(-1,-6)和(1,2)
(1)求这个二次函数的解析式;
(2)求出这个函数的图像的开口方向,对称轴和顶点坐标;
(3)该函数图像与x轴的交点坐标                         .

(1);(2)向上, ,;(3).

解析试题分析:(1)应用待定系数法求解即可;
(2)根据确定开口方向,化为顶点式,求出对称轴和顶点坐标;
(3)在中令,求解即可.
试题解析:(1)∵二次函数图像与y轴交于点(0,-4),∴可设二次函数解析式为.
又∵二次函数图像经过(-1,-6)和(1,2),∴,解得.
∴这个二次函数解析式为 .
(2)∵,∴这个函数的图像的开口向上.
,∴这个函数的图像的对称轴为,顶点坐标为.
(3)在中令,解得,
∴该函数图像与x轴的交点坐标为.
考点:1.待定系数法;2.曲线上点的坐标与方程的关系;3.二次函数的性质;4.二次函数图像与x轴交点问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,抛物线(b,c是常数,且c<0)与轴分别交于点A、B(点A位于点B的左侧),与轴的负半轴交于点C,点A的坐标为(-1,0).

(1)请直接写出点OA的长度;
(2)若常数b,c满足关系式:.求抛物线的解析式.
(3)在(2)的条件下,点P是轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有多少个(直接写出结果)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的方程
(1)当k取何值时,方程有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设该旗舰店每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要     元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2+2x-1.
(1)写出它的顶点坐标;
(2)当x取何值时,y随x的增大而增大;
(3)求出图象与轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:关于的二次函数y=px2-(3p+2)x+2p+2(p>0)
(1)求证:无论p为何值时,此函数图象与x轴总有两个交点;
(2)设这两个交点坐标分别为(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S关于P的函数解析式

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使SPBD=6?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案