A. | 3:4 | B. | 9:16 | C. | 4:9 | D. | 1:3 |
分析 设DE=3k,EC=k,则CD=4k,由四边形ABCD是平行四边形,推出AB=CD=4k,DE∥AB,推出△DEF∽△BAF,推出$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{DE}{AB}$)2由此即可解决问题.
解答 解:设DE=3k,EC=k,则CD=4k,
∵四边形ABCD是平行四边形,
∴AB=CD=4k,DE∥AB,
∴△DEF∽△BAF,
∴$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{DE}{AB}$)2=($\frac{3k}{4k}$)2=$\frac{9}{16}$,
故选B.
点评 本题考查相似三角形的性质和判定、平行四边形的性质等知识,解题的关键是灵活运用平行四边形的性质,学会利用参数解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2π-4 | B. | 4π-8 | C. | 2π-8 | D. | 4π-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com