【题目】如图,在5×5的方格纸中,每一个小正方形的边长都为1.
(1)∠BCD是不是直角?请说明理由;
(2)求四边形ABCD的面积.
【答案】(1)见解析;(2)
【解析】试题分析:(1)连接BD,由于每一个小正方形的边长都为1,根据勾股定理可分别求出△BCD的三边长,根据勾股定理的逆定理即可判断出△BCD的形状;
(2)S四边形ABCD=S正方形AHEJ-S△BCE-S△ABH-S△ADI-S△DCF-S正方形DFJI.
试题解析:(1)∠BCD是直角,理由如下:连接BD,
∵BC==2,CD==,BD==5,
∴BC2+CD2=BD2,
∴∠BCD为直角;
(2)S四边形ABCD=S正方形AHEJ-S△BCE-S△ABH-S△ADI-S△DCF-S正方形DFJI,
所以S四边形ABCD=5×5﹣×4×2﹣×2×1﹣1×1﹣×4×1﹣×5×1,
=25﹣4﹣1﹣1﹣2﹣=.
科目:初中数学 来源: 题型:
【题目】小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 7 | 9 | 6 | 8 | 20 | 10 |
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A坐标为(6,0),点B在y轴的正半轴上,且=240.
(1)求点B坐标;
(2)若点P从B出发沿y轴负半轴方向运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;
(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)OA= cm,OB= cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个边长为6的等边三角形电子跳蚤游戏盘.如果跳蚤开始时在AB边的P0处,且BP0=1,跳蚤第一步从P0跳到BC边的P1(第1次落点)处,且BP1=BP0;第二步从P1跳到AC边的P2(第2次落点)处,且CP2=CP1;第三步从P2 跳到AB边的P3(第3次落点)处,且AP3=AP2;…;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2017与P2018之间的距离为( )
A. 1 B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则A2017的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰Rt△ABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰Rt△ADE,∠DAE=90°.连接CE.
(1)如图,求证:△ACE≌△ABD;
(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;
(3)若AC=,当CD=1时,请求出DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com