【题目】
(1)OA= cm,OB= cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm.
【答案】(1)16,8;(2)CO=;(3)①t=或16s时,2OP﹣OQ=8.②48cm.
【解析】试题分析:(1)由OA=2OB,OA+OB=24即可求出OA、OB.
(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.
(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.
②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.
解:(1)∵AB=24,OA=2OB,
∴20B+OB=24,
∴OB=8,0A=16,
故答案分别为16,8.
(2)设CO=x,则AC=16﹣x,BC=8+x,
∵AC=CO+CB,
∴16﹣x=x+8+x,
∴x=,
∴CO=.
(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=,
当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,
∴t=或16s时,2OP﹣OQ=8.
②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,
∴点M运动的路程为16×3=48cm.
故答案为48cm.
科目:初中数学 来源: 题型:
【题目】找规律.
一张长方形桌子可坐6人,按如图方式把桌子拼在一起.
(1)2张桌子拼在一起可坐 人;
3张桌子拼在一起可坐 人;
n张桌子拼在一起可坐 人.
(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;
(2)在DE上画出点Q,使△QAB的周长最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F.证明:
(1)AD=AE
(2)BF⊥CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,M为BC边上的中点,D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE=度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(1)的条件下,若AB=6,试求CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com