精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系中,一次函数y=-x+b的图象与正比例函数y=kx的图象都经过点B(3,1)
(1)求一次函数和正比例函数的表达式;
(2)若直线CD与正比例函数y=kx平行,且过点C(0,-4),与直线AB相交于点D,求点D的坐标.(注:二直线平行,k相等)
(3)连接CB,求三角形BCD的面积.

分析 (1)把B(3,1)分别代入y=-x+b和y=kx即可得到结论;
(2)由二直线平行,得到直线CD为y=$\frac{1}{3}$x+4,解方程组得到点D为(6,-2);
(3)根据三角形的面积公式即可得到结论.

解答 解:(1)把B(3,1)分别代入y=-x+b和y=kx得1=-3+b,1=3k,
解得:b=4,k=$\frac{1}{3}$,
∴y=-x+4,y=$\frac{1}{3}$x;

(2)∵二直线平行,CD经过C(0,-4),
∴直线CD为y=$\frac{1}{3}$x+4,
由题意得:$\left\{{\begin{array}{l}{y=-x+4}\\{y=\frac{1}{3}x-4}\end{array}}\right.$,
解之得$\left\{{\begin{array}{l}{x=6}\\{y=-2}\end{array}}\right.$,
∴点D为(6,-2);

(3)由y=$\frac{1}{3}$x+4中,令x=0,则 y=4,
∴A(0,4),
∴AC=8,
∴S△BCD=S△ACD-S△ABC=$\frac{1}{2}$×8×6-$\frac{1}{2}$×8×3=12.

点评 本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.用图象法解不等式:2x+1>-$\frac{1}{2}$x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=-x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.
(1)试求抛物线的解析式和直线AB的解析式;
(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以$\sqrt{2}$个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?
(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简再求值
(1)(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1$\frac{3}{4}$,b=-$\frac{2}{7}$
(2)4(a+2)2-6(a+3)(a-3)+3(a-1)2,其中a=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
平均数(cm)185180185180
方差3.63.67.48.1
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知△ABC中,AB=AC=6$\sqrt{2}$,BC=12.点P从点B出发沿线段BA移动,同时点Q从点C出发沿线段AC的延长线移动,点P、Q移动的速度相同,PQ与直线BC相交于点D.

(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.
(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.函数y=-x+1、y=$\frac{3}{x}$、y=x2+x-2,y随x的增大而减小的有(  )个.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知x=3是关于x的方程:4x-a=3+ax的解,那么a的值是(  )
A.2B.$\frac{9}{4}$C.3D.$\frac{9}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:
$\frac{{x}^{2}-8x+16}{{x}^{2}+2x}$÷(x-2-$\frac{12}{x+2}$)-$\frac{1}{x+4}$,其中x=2cos45°-$\sqrt{3}$tan60°+tan45°.

查看答案和解析>>

同步练习册答案