【题目】如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.有一组对边平行的四边形是梯形
C.一组对边相等,一组对角相等的四边形是平行四边形
D.对角线相等的平行四边形是矩形
【答案】C
【解析】解:∵△ABC是等腰三角形, ∴AB=AC,∠B=∠C,
在△ADE与△DAC中,
∵ ,
∴△ADE≌△DAC,
∴∠E=∠C,
∴∠B=∠E,AB=DE,
但是四边形ABDE不是平行四边形,
故一组对边相等,一组对角相等的四边形是平行四边形说法错误;
故选:C.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握平行四边形的判定(两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】2018年,新疆某次足球联赛规定每队胜一场得3分,平一场得1分,负一场得0分,某队前14场保持不败,共得32分,设该队平了x场,根据题意列方程得:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】感知:如图1,在△ABC中,∠ABC=42°,∠ACB=72°,点D是AB上一点,E是AC上一点,BE、CD相交于点F.
(1)若∠ACD=35°,∠ABE=20°,求∠BFC的度数;
(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度数;
探究:如图2,在△ABC中,BE平分∠ABC,CD平分∠ACB,写出∠BFC与∠A之间的数量关系,并说明理由;
应用:如图3,在△ABC中,BD平分∠ABC ,CD平分外角∠ACE,请直接写出∠BDC与∠A之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北京奥运会体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么它的原数是( )
A.4600000B.46000000C.460000000D.4600000000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型 | 甲 | 乙 | 丙 |
汽车运载量(吨/辆) | 5 | 8 | 10 |
汽车运费(元/辆) | 400 | 500 | 600 |
(1)全部物资可用甲型车8辆,乙型车5辆,丙型车 辆来运送.
(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(3)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.﹣1的平方根是﹣1
B.4的平方根是2
C.如果一个数有平方根,那么这个数的平方根一定有两个
D.任何一个非负数的立方根都是非负数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com