【题目】(1)如图(1),在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在线段BA、AB的延长线上,且AD=AC,BE=BC,则∠DCE= ;
(2)如图(2),在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在边AB上,且AD=AC,BE=BC,求∠DCE的度数;
(3)在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在直线AB上,且AD=AC,BE=BC,则∠求DCE的度数(直接写出答案);
(4)如图(3),在△ABC中,AB=14,AC=15,BC=13,点D、E在直线AB上,且AD=AC,BE=BC.请根据题意把图形补画完整,并在图形的下方直接写出△DCE的面积.(如果有多种情况,图形不够用请自己画出,各种情况用一个图形单独表示).
【答案】(1)、130°;(2)、50°;(3)、40°;(4)、252或84或96或72.
【解析】
试题分析:(1)、根据等腰三角形的性质得到∠ACD=∠D,∠BCE=∠E,由三角形的内角和得到∠CAB+∠CBA=100°,根据三角形的外角的性质得到∠CDA+∠BCE=(∠CAB+∠CBA)=50°,即可得到结论;
(2)、根据三角形的内角和和外角的性质即可得到结论;(3)、点D、E分别在直线AB上,除去(1)(2)两种情况,还有两种情况,如图3,由(1)知,∠D=CAB,由(2)知∠CEB=,列方程即可求得结果.(4)在△ABC中,AB=14,AC=15,BC=13,过C作CF⊥AB与F,根据勾股定理求得AB边上的高CF=12,然后根据三角形的面积公式即可强大的结论.
试题解析:(1)、∵AD=AC,BE=BC, ∴∠ACD=∠D,∠BCE=∠E, ∵∠ACB=80°,
∴∠CAB+∠CBA=100°, ∴∠CDA+∠BCE=(∠CAB+∠CBA)=50°, ∴∠DCE=130°,
(2)、∵∠ACB=80°, ∴∠A+∠B=100°, ∵AD=AC,BE=BC, ∴∠ACD=∠ADC,∠BEC=∠BCE,
∴∠ADC=,∠BEC=, ∴∠ADC+∠BEC=180°﹣(∠A+∠B)=130°,∴∠DCE=50°;
(3)、点D、E分别在直线AB上,除去(1)(2)两种情况,还有两种情况,如图3,
由(1)知,∠D=CAB,由(2)知∠CEB=, ∴∠CEB=∠D+∠DCE,
∴=CAB+∠DCE, ∴∠DCE=40°, 如图4,同理∠DCE=40°;
(4)、在△ABC中,AB=14,AC=15,BC=13, 过C作CF⊥AB与F,
(5)则AC2﹣AF2=BC2﹣BF2,即152﹣AF2=132﹣(14﹣AF)2, 解得:AF=9, ∴CF=12,
①如图1,DE=AB+AC+BC=42, ∴S△CDE=×42×12=252;
②如图2,DE=AC+BC﹣AB=14, ∴S△CDE=×14×12=84;
③如图3,DE=AC+AB﹣BC=16, ∴S△CDE=×16×12=96;
④如图4,DE=AB+BC﹣AC=12, ∴S△CDE=×12×12=72.
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,
(1)求证:OE=OF
(2)求 EF的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的面积;
(2)当t为几秒时,BP平分∠ABC;
(3)问t为何值时,△BCP为等腰三角形?
(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.
(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;
②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com