精英家教网 > 初中数学 > 题目详情

【题目】若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是(
A.
B.
C.
D.

【答案】A
【解析】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根, ∴
解得:k>﹣1.
故选A.
【考点精析】通过灵活运用求根公式和不等式的解集在数轴上的表示,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).
(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;
(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐标系中的三点.

(1)①请画出△ABC关于y轴对称的△A1B1C1
②画出△A1B1C1向下平移3个单位得到的△A2B2C2
(2)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD= 时,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后y与x之间的函数关系式;
(4)何时两车相距300千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣ x﹣ 与x,y轴分别交于点A,B,与反比例函数y= 的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.

(1)求抛物线y=ax2+bx+2的函数表达式;
(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;
(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.

(1)判断四边形ACC'A'的形状,并说明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC= ,求CB'的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

查看答案和解析>>

同步练习册答案