【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD= 时,求线段BG的长.
【答案】
(1)解:BD=CF成立.
理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS).
∴BD=CF.
(2)①证明:设BG交AC于点M.
∵△BAD≌△CAF(已证),
∴∠ABM=∠GCM.
∵∠BMA=∠CMG,
∴△BMA∽△CMG.
∴∠BGC=∠BAC=90°.
∴BD⊥CF.
②过点F作FN⊥AC于点N.
∵在正方形ADEF中,AD=DE= ,
∴AE= =2,
∴AN=FN= AE=1.
∵在等腰直角△ABC 中,AB=4,
∴CN=AC﹣AN=3,BC= =4 .
∴在Rt△FCN中,tan∠FCN= = .
∴在Rt△ABM中,tan∠ABM= =tan∠FCN= .
∴AM= AB= .
∴CM=AC﹣AM=4﹣ = ,BM= = = .
∵△BMA∽△CMG,
∴ .
∴ .
∴CG= .
∴在Rt△BGC中,BG= = .
【解析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN长,又由等角的三角函数值相等,可求得AM= AB= ,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.
(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少万元?
(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com