精英家教网 > 初中数学 > 题目详情

【题目】如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.

(1)判断四边形ACC'A'的形状,并说明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC= ,求CB'的长.

【答案】
(1)

解:四边形ACC'A'是菱形.理由如下:

由平移的性质得到:AC∥A′C′,且AC=A′C′,

则四边形ACC'A'是平行四边形.

∴∠ACC′=∠AA′C′,

又∵CD平分∠ACB的外角,即CD平分∠ACC′,

∴CD也平分∠AA′C′,

∴四边形ACC'A'是菱形.


(2)

解:∵在△ABC中,∠B=90°,A B=24,cos∠BAC=

∴cos∠BAC= = ,即 =

∴AC=26.

∴由勾股定理知:BC= = =7

又由(1)知,四边形ACC'A'是菱形,

∴AC=AA′=26.

由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,

∴AA′=BB′=26,

∴CB′=BB′﹣BC=26﹣7


【解析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.
【考点精析】通过灵活运用平移的性质和解直角三角形,掌握①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式2x﹣3< ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为(
A.一定不是平行四边形
B.一定不是中心对称图形
C.可能是轴对称图形
D.当AC=BD时它是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,Rt△PAB的直角顶点P(3,4)在函数y= (x>0)的图象上,顶点A、B在函数y= (x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为SOPA , △PAB的面积为SPAB , 设w=SOPA﹣SPAB . ①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

同步练习册答案