精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,ME分别是边ABAD上的点,AM=BMAE=AD,连接ME并延长交CD的延长线于点N

(1)求证:△AME∽△BCM.

(2)若正方形的边长为4,求CN的长.

【答案】(1)证明见解析;(2)CN=10.

【解析】

1)根据正方形的特性得出在△AME和△BCM中两直角相等,且两对直角边成比列即可证得;

2)根据ABCD证得△AME∽△DNE,再根据相似得出即可求解.

1)∵四边形ABCD为正方形

∴∠A=B=90°

设正方形边长为4k

AM=BM

AM=BM=

AE=AD

AE=k

∴△AME∽△BCM

2)∵正方形ABCD中,ABCD

∴△AME∽△DNE

DN=6

CN=CD+DN=10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】国务院办公厅在2015316日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了足球在身边知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:

1)获得一等奖的学生人数;

2)在本次知识竞赛活动中,ABCD四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到AB两所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为AB

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

m1时,求线段AB上整点的个数;

若抛物线在点AB之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x22x+3的图象与x轴交于AB两点(A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点ABC的坐标;

(2)M(m0)为线段AB上一点(M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;

(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;

(4)(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点Fy轴的平行线,与直线AC交于点G(G在点F的上方).若FG2DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线轴交于两点,与轴交于点,顶点为点

1)求这条抛物线的解析式及直线的解析式;

2上一动点(点不与点重合),过点轴引垂线,垂足为,设的长为,四边形的面积为.求之间的函数关系式及自变量的取值范围;

3)在线段上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列是中心对称图形但不是轴对称图形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形是动点,边长为4 ,则下列结论正确的有几个(

为等边三角形

,则

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点O是∠EPF平分线上的一点,以点O为圆心的圆与角的两边分别交于点ABCD 求证:AB=CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的对称轴为直线,且经两点.

求抛物线的解析式;

在抛物线的对称轴上,是否存在点,使它到点的距离与到点的距离之和最小,如果存在求出点的坐标,如果不存在请说明理由.

查看答案和解析>>

同步练习册答案