精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线的对称轴为直线,且经两点.

求抛物线的解析式;

在抛物线的对称轴上,是否存在点,使它到点的距离与到点的距离之和最小,如果存在求出点的坐标,如果不存在请说明理由.

【答案】(1);(2)存在.(-1,-2).

【解析】

1)利用待定系数法即可求得函数的解析式;
(2)抛物线与x轴的除A外的另一个交点C就是A的对称点,则BC与对称轴的交点就是M,首先求得C的坐标,然后求得BC的解析式,进而求得M的坐标.

解:根据题意得: 解得:

则二次函数的解析式是

存在.

设抛物线与轴的另一个交点是,由抛物线的对称性得与对称轴的交点就是

点的坐标是

设直线的解析式是,则

解得

∴直线的解析式是

时,

∴点的坐标是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8/千克,下面是他们在活动结束后的对话.

小丽:如果以10/千克的价格销售,那么每天可售出300千克.

小强:如果以13/千克的价格销售,那么每天可售出240千克.

小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系,每天销售200千克以上.

(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式;

(2)该超市销售这种水果每天获取的利润达到1040元,那么销售单价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m),在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A(-3,1),B(-3,-3),第三个景点C(3,2)的位置已破损.

(1)请在图中标出景点C的位置;

(2)小明想从景点B开始游玩,途经景点A,最后到达景点C,求小明一家最短的行走路程(参考数据:≈6,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个关于的代数式,若存在一个系数为正数关于的单项式,使 的结果是所有系数均为整数的整式,则称单项式为代数式的“整系单项式” ,例如:

时,由于 ,故的整系单项式;

时,由于 ,故的整系单项式;

时,由于 ,故的整系单项式;

时,由于 ,故的整系单项式;

显然,当代数式存在整系单项式时,有无数个,现把次数最低,系数最小的整系单项式记为 ,例如: .

阅读以上材料并解决下列问题:

.判断:当 时, 的整系单项式(填“是”或“不是”);

. 时, = ;

.解方程:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要建一个如图所示的面积为300 的长方形围栏,围栏总长50m,一边靠墙(墙长25m),

(1)求围栏的长和宽;

(2)能否围成面积为400 的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,交轴于点,顶点为,其对称轴交轴于点.直线经过两点,交抛物线的对称轴于点,其中点的横坐标为

(1)求抛物线的表达式;

(2)连接,求的周长;

(3)是抛物线位于直线的下方且在其对称轴左侧上的一点,当四边形的面积最大时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某电信公司提供了两种方案的移动通讯费用(元)与通话时间(分)之间的关系,则以下说法正确的是(

①若通话时间少于120分,则方案比方案便宜

②若通话时间超过200分,则方案比方案便宜

③通讯费用为60元,则方案比方案的通话时间多

④当通话时间是170分钟/时,两种方案通讯费用相等

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=(x2)2m与x轴交于点A和B,与y轴交于点C,点D是点C关于抛物线对称轴的对称点,若点A的坐标为(1,0),直线y2=kx+b经过点A,D.

(1)求抛物线的函数解析式;

(2)求点D的坐标和直线AD的函数解析式;

(3)根据图象指出,当x取何值时,y2>y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.

(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?

(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

同步练习册答案