【题目】(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.
【答案】解:(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BCD=90°,
∴∠PCB+∠QCD=90°,
∵∠PBC+∠PCB=90°,
∴∠PBC=∠QCD,
在△CBP和△CDQ中
∴△CBP≌△CDQ(AAS),
∴CP=DQ=1,
∵BP=3,
∴;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,
∵∠DCB=120°,
∴∠PCB+∠DCQ=60°,
∵∠PBC+∠PCB=60°,
∴∠PBC=∠DCQ,
在△BPC和△CQD中
∴△BPC≌△DQC,
∴PC=DQ,PB=CQ,
∵∠BPC=∠DQC=120°,
∴∠BPM=∠DQN=60°,
∴sin∠BPM=,sin∠DQN=,
∵BM=3,DN=1,
∴PB=2,DQ=,
∴PC=DQ=,
∵∠BPM=60°,
∴∠PBM=30°,
∵在RT△PBM中,PM=PB=,
∴MC=PC+PM=,
∴在RT△PBM中,BC===.
【解析】(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,通过证得△CBP≌△CDQ,得出CP=DQ=1,然后根据勾股定理即可求得;
(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,通过证得△BPC≌△DQC证得PC=DQ,通过解直角三角形求得PM,DQ,进而求得MC,然后根据勾股定理即可求得.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】大美山水“硒都恩施”是一张亮丽的名片,八方游客慕名而来,今年“五一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为( )
A.0.145×106B.14.5×105C.1.45×105D.1.45×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,M,N分别是边BC,CD上的点,且AM=AN=MN=AB,则∠C的度数为( )
A.120°
B.100°
C.80°
D.60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把多项式-8a2b3c+16a2b2c2-24a3bc3分解因式,应提的公因式是( )
A.-8a2bc
B.2a2b2c3
C.-4abc
D.24a3b3c3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com