【题目】如图.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2),
(1)画△ABC关于y轴对称的图形△A1B1C1;
(2)以O为位似中心,在第二象限内把△ABC扩大到原来的两倍,得则△A2B2C2,画出△A2B2C2;
(3)△ABC的面积为______.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线相交于O.点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于E,F两点,且∠MAN=45°,则下列结论:①MN=BM+DN;②△AEF∽△BEM;③;④△FMC是等腰三角形.其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;
(2)若函数的边界值是2,且这个函数的最大值也是2,求的取值范围;
(3)将函数的图象向下平移个单位,得到的函数的边界值是,当在什么范围时,满足?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)
(1)如图1,若点C是AB的中点,则∠CED=______°;
(2)如图2.若点C不是AB的中点
①求证:△DEF为等边三角形;
②连接CD,若∠ADC=90°,AD=,请求出DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:
(1)本次一共调查了 名学生;
(2)请将条形统计图补充完整;
(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中的两个图形M与N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“和睦距离”,记作d(M,N).若图形M,N有公共点,则d(M,N)=0.
(1)如图,A(0,1),C(3,4),⊙C的半径为2,则d(C,⊙C)= ,d(O,⊙C)= ;
(2)已知,如图,△ABC的一边AC在x轴上,B在y轴上,且AC=8,AB=7,BC=5.
①D是△ABC内一点,若AC、BC分别切⊙D于E、F,且d(C,D)=2d(D,AB),判断AB与⊙D的位置关系,并求出D点的坐标;
②若以r为半径,①中的D为圆心的⊙D,有d(B,⊙D)>1,d(C,⊙D)<2,直接写出r的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段 AC=4,线段BC绕点C旋转,且BC=6,连结AB,以AB为边作正方形ADEB,连结CD.
(1)若∠ACB=90°,则AB的值是____;
(2)线段CD长的最大值是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com