精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线经过点

1)求此抛物线的函数解析式;

2)判断点是否在此抛物线上;

3)求出抛物线上纵坐标为的点的坐标.

【答案】1y=-2x2;(2)点B14)不在此抛物线上;(3)(--6),(-6

【解析】

1)把A点代入y=ax2中求出a的值即可;
2)根据二次函数图象上点的坐标特征进行判断;
3)解方程-2x2=-6即可.

解:(1)把A-2-8)代入y=ax24a=-8,解得a=-2
∴此抛物线的函数解析式为y=-2x2
2)当x=1时,y=-2x2=-2
∴点B14)不在此抛物线上;
3)当y=-6时,-2x2=-6
解得x=±

∴抛物线上纵坐标为-6的点的坐标为(--6),(-6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x+cx轴于AB两点(BA左侧),交y轴于CAB10

1)求抛物线的解析式;

2)在A点右侧的x轴上取点DE为抛物线上第二象限内的点,连接DE交抛物线另外一点FtanBDEDF2EF,求E点坐标;

3)在(2)的条件下,点Gx轴负半轴上,连接EGEHAB交抛物线另外一点H,点K在第四象限的抛物线上,设DEy轴于R,∠EHK=∠EGD+ORD,当HKEG,求K点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系内,的三个顶点的分别为(正方形网格中每个小正方形的边长是一个单位长度).

1)在网格内画出向下平移2个单位长度得到的,点的坐标是________

2)以点为位似中心,在网格内画出,使位似,且位似比为,点的坐标是________

3的面积是________平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在矩形 ABCD AB=8BC=6AE=BE,点 F 为边 BC 上任意一点,将BEF 沿着 EF 翻折,点 B 为点 B 的对应点,则当BCD 的面积最小时BCF 的面积为(

A.4B.6C.4.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+x1x轴交于点AB(A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线lyt(t)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.

(1)ABD的坐标分别为         

(2)如图,抛物线翻折后,点D落在点E处.当点E在△ABC(含边界)时,求t的取值范围;

(3)如图,当t0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是△ABC的外接圆,AB为直径,ODBC交⊙D于点D,AC于点E,连接AD,BD,CDAB=10,cosABC=,tanDBC的值是( )

A.B.C.2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,A为⊙0外一点,A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=DPA

1)求证:PO=PD

(2)AC=,求⊙O的半径。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADCD,以AB为直径的⊙O经过点C,连接ACOD交于点E

1)证明:ODBC

2)若AD是⊙O的切线,连接BD交于⊙O于点F,连接EF,且OA1,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子中有1个白球和2个红球,这些球除颜色外都相同.

⑴如果从盒子中随机摸出1个球,摸出红色球的概率为_____________;

⑵若从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请通过列表或画树状图的方法,求两次摸到不同颜色球的概率.

查看答案和解析>>

同步练习册答案