【题目】已知抛物线经过点.
(1)求此抛物线的函数解析式;
(2)判断点是否在此抛物线上;
(3)求出抛物线上纵坐标为的点的坐标.
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x+c交x轴于A、B两点(B在A左侧),交y轴于C,AB=10.
(1)求抛物线的解析式;
(2)在A点右侧的x轴上取点D,E为抛物线上第二象限内的点,连接DE交抛物线另外一点F,tan∠BDE=,DF=2EF,求E点坐标;
(3)在(2)的条件下,点G在x轴负半轴上,连接EG,EH∥AB交抛物线另外一点H,点K在第四象限的抛物线上,设DE交y轴于R,∠EHK=∠EGD+∠ORD,当HK=EG,求K点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在矩形 ABCD 中 AB=8,BC=6,AE=BE,点 F 为边 BC 上任意一点,将BEF 沿着 EF 翻折,点 B 为点 B 的对应点,则当BCD 的面积最小时BCF 的面积为( )
A.4B.6C.4.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.
(1)点A,B,D的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙D于点D,交AC于点E,连接AD,BD,CD若AB=10,cos∠ABC=,则tan∠DBC的值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点A为⊙0外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA。
(1)求证:PO=PD
(2)若AC=,求⊙O的半径。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若AD是⊙O的切线,连接BD交于⊙O于点F,连接EF,且OA=1,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子中有1个白球和2个红球,这些球除颜色外都相同.
⑴如果从盒子中随机摸出1个球,摸出红色球的概率为_____________;
⑵若从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请通过列表或画树状图的方法,求两次摸到不同颜色球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com