【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有五个小球,每个小球上面分别标着 1,2,3,4,5 这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同.把分别标有数字 4、5 的两个小球放入不透明的口袋 A 中,把分别标有数 字 1、2、3 的三个小球放入不透明的口袋 B 中.现随机从 A 和 B 两个口袋中各取出一个小球,把 从 A 口袋中取出的小球上标的数字记作 m,从B口袋中取出的小球上标的数字记作 n,且 m-n=k,则 y 关于 x 的二次函数 与 x 轴有交点的概率是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程 (a+2b)x2-2x+(a+2b)=0有实数根.
(1)若a=2,b=1,求方程的根
(2)若m=a2+b2+5a,若b<0,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连结EQ.设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;
(3)当为何值时,为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高度4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.
(1)求此抛物线对应的函数关系式;
(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME,BN.
(1)补全图形;
(2)求ME:BN的值;
(3)问:点M在何处时BM+BN取得最小值?确定此时点M的位置,并求此时BM+BN的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com