【题目】已知关于x的一元二次方程 (a+2b)x2-2x+(a+2b)=0有实数根.
(1)若a=2,b=1,求方程的根
(2)若m=a2+b2+5a,若b<0,求m的取值范围.
【答案】(1)x1=x2=(2)m≥5
【解析】
(1)将a=2、b=1代入原方程中,利用直接开方法解一元二次方程即可得出结论;
(2)由b<0、2ab≥0找出a的取值范围,再根据方程有实数根,利用根的判别式△≥0找出a、b之间的关系,由此即可得出m关于b的函数关系式,结合b的取值范围即可得出m的取值范围.
(1)当a=2、b=1时,原方程为4x24x+1=(2x1)2=0,
解得:x1=x2=.
(2)∵2ab≥0,b<0,
∴a≤0.
∵方程(a+2b)x2-2x+(a+2b)=0有实数根有实数根,
∴△=(2)24×(a+2b)×(a+2b)=(a2b)2≥0,
∴a=2b,
∴m=a2+b2+5a=5b2+10b=5(b+1)25,
∵b<0,
∴m≥5.
科目:初中数学 来源: 题型:
【题目】如图,已知一居民楼前方处有一建筑物,小敏在居民楼的顶部处和底部处分别测得建筑物顶部的仰角为和,求居民楼的高度和建筑物的高度(结果取整数).
(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x+c交x轴于A、B两点(B在A左侧),交y轴于C,AB=10.
(1)求抛物线的解析式;
(2)在A点右侧的x轴上取点D,E为抛物线上第二象限内的点,连接DE交抛物线另外一点F,tan∠BDE=,DF=2EF,求E点坐标;
(3)在(2)的条件下,点G在x轴负半轴上,连接EG,EH∥AB交抛物线另外一点H,点K在第四象限的抛物线上,设DE交y轴于R,∠EHK=∠EGD+∠ORD,当HK=EG,求K点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】距离中考体考时间越来越近,年级想了解初三年级1000名学生周末在家体育锻炼的情况,在初三年级随机抽取了20名男生和20名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:min):
男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40
女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90
统计数据,并制作了如下统计表:
时间 x | x≤30 | 30<x≤60 | 60<x≤90 | 90<x≤120 | |
男生 | 2 | 8 | 8 | 2 | |
女生 | 1 | m | n | 3 |
分析数据:两组数据的极差、平均数、中位数、众数如下表所示
极差 | 平均数 | 中位数 | 众数 | |
男生 | a | 65.75 | b | 90 |
女生 | c | 75.5 | 75 | d |
(1)请将上面的表格补充完整:m= ,n= ,a= ,b= ,c= ,d=
(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在 90min 以上的同学约有多少人?
(3)李老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持李老师观点的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在矩形 ABCD 中 AB=8,BC=6,AE=BE,点 F 为边 BC 上任意一点,将BEF 沿着 EF 翻折,点 B 为点 B 的对应点,则当BCD 的面积最小时BCF 的面积为( )
A.4B.6C.4.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若AD是⊙O的切线,连接BD交于⊙O于点F,连接EF,且OA=1,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com