精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论: ① ;②∠ADF=∠CDB;③点F是GE的中点;④AF= AB;⑤SABC=5SBDF
其中正确结论的序号是

【答案】①②④
【解析】解:依题意可得BC∥AG, ∴△AFG∽△BFC,∴
又AB=BC,∴
故结论①正确;
如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.
在△ABG与△BCD中,

∴△ABG≌△BCD(ASA),
∴AG=BD,又BD=AD,∴AG=AD;
在△AFG与△AFD中,

∴△AFG≌△AFD(SAS),∴∠5=∠2,
又∠5+∠3=∠1+∠3=90°,∴∠5=∠1,
∴∠1=∠2,即∠ADF=∠CDB.
故结论②正确;
∵△AFG≌△AFD,∴FG=FD,又△FDE为直角三角形,∴FD>FE,
∴FG>FE,即点F不是线段GE的中点.
故结论③错误;
∵△ABC为等腰直角三角形,∴AC= AB;
∵△AFG≌△AFD,∴AG=AD= AB= BC;
∵△AFG∽△BFC,∴ ,∴FC=2AF,
∴AF= AC= AB.
故结论④正确;
∵AF= AC,∴SABF= SABC;又D为中点,∴SBDF= SABF
∴SBDF= SABC , 即SABC=6SBDF
故结论⑤错误.
综上所述,结论①②④正确,
所以答案是:①②④.

【考点精析】根据题目的已知条件,利用等腰直角三角形和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是(  )

A. 20,14 B. 19,20 C. 20,20 D. 25,20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某社会团体组织人员参观皇窑瓷展,主办方对团体购票实行优惠:在原定票价的基础上,每张降价40元,则按原定票价需花费6000元购买门票,现在只花了4000元.
(1)求每张门票原定的票价;
(2)在展览期间,平均每天可售出个人票2000张,现主办方决定对个人购票也采取优惠措施,发现原定票价每降低2元,平均每天可多售出个人票40张,若要使平均每天的个人票收入达到241500元,且能有效控制游览人数,则票价应降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是(  )

A. 3(m-1) B. (m-2) C. 1 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.
(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是;②当AP=nPC时(n是正实数),四边形PMCN的面积是
(2)猜想论证 如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则 =
(3)拓展探究 如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究 的值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是(

A. 两人从起跑线同时出发,同时到达终点

B. 小苏跑全程的平均速度大于小林跑全程的平均速度

C. 小苏前15s跑过的路程大于小林前15s跑过的路程

D. 小林在跑最后100m的过程中,与小苏相遇2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是( )

A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ=AP.

查看答案和解析>>

同步练习册答案