精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知在Rt△ABC中,∠BAC=90°,AB=AC,M是AC的中点,AD⊥BM于E,交BC于D点.
(1)求证:BD=2CD;
(2)若AM=
1n
AC,其他条件不变,猜想BD与CD的倍数关系,并证明你的结论.
分析:作CG⊥AC交AD的延长线于G,易证△ABE≌△CAG得到AM=CG,△EBD∽△GCD,因而求
BD
CD
的值的问题可以转化为求
BE
CG
,根据相似三角形的性质就可求解.
解答:精英家教网解:①作CG⊥AD交AD的延长线于G,证△ABE≌△CAG.
∴AE=CG,易证△ABM∽△EBA,则EB:AE=AB:AM=2:1,
∴△EBD∽△GCD,
∴BD:DC=EB:CG=EB:AE=2:1,
∴BD=2CD.

②作CG⊥AD交AD的延长线于G,易证△ABE≌△CAG,
∴AE=CG,设等腰直角三角形ABC的边AB=AC=2a,则AM=MC=a.
在Rt△ABM中,根据勾股定理得到BM=
5
a,AE=CG=
AB•AM
BM
=
2
5
5
a,
∵BM⊥AD,CG⊥AD,
∴△AEM∽△AGC.
EM
CG
=
AM
AC
=
1
n
,则EM=
1
n
•CG=
1
n
2
5
5
a,
∴BE=BM-EM=
5
a-
1
n
2
5
5
a=
5n-2
5n
5
a

BD
DC
=
BE
GC
=
5n-2
2n
点评:解决本题的关键是根据相似三角形的性质转化为另外两个线段的比的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为(  )
A、2
B、
1
2
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•驿城区模拟)如图,已知在Rt△ABC中,∠B=90°,D、E分别是边AB、AC的中点,若DE=4,AC=10,则AB的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°,内切圆的半径为3cm,外接圆的半径为12.5cm,求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°,点D在BC上,AD=BD,sin∠ADC=
45
,AC=4,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°.根据要求用尺规作图:
(1)作斜边AB的垂直平分线PQ,垂足为Q;
(2)作∠B的角平分线BM.

查看答案和解析>>

同步练习册答案