精英家教网 > 初中数学 > 题目详情

【题目】如图,已知等边三角形ABC边长为a,等腰三角形BDC中,∠BDC120,∠MDN60,角的两边分别交ABAC于点MN,连结MN.则AMN的周长为( )

A.aB.2aC.3aD.4a

【答案】B

【解析】

根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长ABF,使BF=CN,连接DF,通过证明△BDF≌△CDN及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.

解:∵△BDC是等腰三角形,且∠BDC=120°
∴∠BCD=DBC=30°
∵△ABC是边长为3的等边三角形
∴∠ABC=BAC=BCA=60°
∴∠DBA=DCA=90°
延长ABF,使BF=CN,连接DF

RtBDFRtCND中,BF=CNDB=DC
RtBDFRtCDNHL),
∴∠BDF=CDNDF=DN
∵∠MDN=60°
∴∠BDM+CDN=60°
∴∠BDM+BDF=60°,∠FDM=60°=MDNDM为公共边
∴△DMN≌△DMFSAS),
MN=MF
∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=2a
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)阅读理解:

如图①,在ABC中,若AB=5AC=3,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是___________

(2)问题解决: 如图②,在ABC,DBC边上的中点,DEDF于点D,DEAB于点E,DFAC于点F,连接EF,求证:BE+CFEF

(3)问题拓展:如图③,在四边形ABCD,B+D=180°,CB=CD,C为顶点作∠ECF,使得角的两边分别交AB,ADEF两点,连接EF,EF=BE+DF,试探索∠ECF与∠A之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是

(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;

(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A>B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQAB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MNBC于点E,若CDE是等边三角形,则∠A=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求代数式a+的值,其中a1007

如图是小亮和小芳的解答过程:

1   的解法是错误的;

2)错误的原因在于未能正确的运用二次根式的性质:   

3)求代数式a+2的值,其中a=﹣2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)t为何值时,CP把△ABC的周长分成相等的两部分。

(2)t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;

(3)t为何值时,△BCP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.

根据以上信息回答下列问题:

1)本次共随机抽取了   名学生进行调查,听写正确的汉字个数x   范围的人数最多;

2)补全频数分布直方图;

3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;

听写正确的汉字个数x

组中值

1x11

6

11x21

16

21x31

26

31x41

36

4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;

(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.

(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°AC=BC,点C的坐标为(﹣20),点A的坐标为(﹣63),求点B的坐标.

查看答案和解析>>

同步练习册答案