精英家教网 > 初中数学 > 题目详情

【题目】如图,在扇形铁皮AOB中,OA=20,AOB=36°,OB在直线 上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第一次落在l上时,停止旋转.则点O所经过的路线长为
( )
A.
B.
C.
D.

【答案】C
【解析】点O所经过的路线长= = =24π.

所以答案是:C.

【考点精析】根据题目的已知条件,利用弧长计算公式和图形的旋转的相关知识可以得到问题的答案,需要掌握若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,等腰中,中点,连接

1)求证:是等边三角形

2)如图2,在内有一点,连接,若,求的度数

3)如图3,在(2)的条件下,在外有一点,连接、若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P

(1)如果∠A=80°,求∠BPC的度数;

(2)如图②,作△ABC外角∠MBC∠NCB的角平分线交于点Q,试探索∠Q∠A之间的数量关系.

(3)如图③,延长线段BPQC交于点E△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+mx+n与直线y=﹣ x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).

(1)求抛物线的解析式和tan∠BAC的值;
(2)在(1)条件下,P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,MN,EF是两面互相平行的镜面,根据镜面反射规律,若一束光线AB照射到镜面MN,反射光线为BC,则一定有∠1=2.试根据这一规律:

(1)利用直尺和量角器作出光线BC经镜面EF反射后的反射光线CD;

(2)试判断ABCD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、B两点的坐标分别为(-4,0)、(0,2),⊙C的圆心坐标为(0,-2),半径为2.若D是⊙C上的一个动点,射线AD与 轴交于点E,则△ABE面积的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点在数轴上对应的数为,点对应的数为,且满足.

1)求点与点在数轴上对应的数

2)现动点从点出发,沿数轴向右以每秒个单位长度的速度运动;同时,动点从点出发,沿数轴向左以每秒个单位长度的速度运动,设点的运动时间为.

若点和点相遇于点, 求点在数轴上表示的数;

当点和点相距个单位长度时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提供的信息,有下列说法:
①食堂离小明家0.4km;
②小明从食堂到图书馆用了3min;
③图书馆在小明家和食堂之间;
④小明从图书馆回家的平均速度是0.04km/min.
其中正确的有( )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:菱形OBCD在平面直角坐标系中位置如图所示,点B的坐标为(2,0),∠DOB=60°.

(1)点D的坐标为 , 点C的坐标为
(2)若点P是对角线OC上一动点,点E(0,﹣ ),求PE+PB的最小值.

查看答案和解析>>

同步练习册答案